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Introduction: Lamotrigine, an anticonvulsant drug with inhibition properties of multi-ion channels, has 

been shown to be able to attenuates secondary neuronal damage by influencing different pathways. The 

aim of this study was to look into whether lamotrigine treatment could protect the spinal cord from 

experimental spinal cord ischemia-reperfusion injury. 

Materials and methods: Thirty-two rats, eight rats per group, were randomly assigned to the sham 

group in which only laparotomy was performed, and to the ischemia, methylprednisolone and lamot- 

rigine groups, where the infrarenal aorta was clamped for thirty minutes to induce spinal cord ischemia- 

reperfusion injury. Tissue samples belonging to spinal cords were harvested from sacrificed animals 

twenty-four hours after reperfusion. Tumor necrosis factor-alpha levels, interleukin-1 beta levels, nitric 

oxide levels, superoxide dismutase activity, catalase activity, glutathione peroxidase activity, malondialde- 

hyde levels and caspase-3 activity were studied. Light and electron microscopic evaluations were also 

performed to reveal the pathological alterations. Basso, Beattie, and Bresnahan locomotor scale and the 

inclined-plane test was used to evaluate neurofunctional status at the beginning of the study and just 

before the animals were sacrificed. 

Results: Lamotrigine treatment provided significant improvement in the neurofunctional status by pre- 

venting the increase in cytokine expression, increased lipid peroxidation and oxidative stress, depletion 

of antioxidant enzymes activity and increased apoptosis, all of which contributing to spinal cord damage 

through different paths after ischemia reperfusion injury. Furthermore, lamotrigine treatment has shown 

improved results concerning the histopathological and ultrastructural scores and the functional tests. 

Conclusion: These results proposed that lamotrigine may be a useful therapeutic agent to prevent the 

neuronal damage developing after spinal cord ischemia-reperfusion injury. 

© 2021 Elsevier Ltd. All rights reserved. 
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During the thoracoabdominal aortic surgery, cessation and 

estoring of spinal cord blood flow can cause initially ischemic and 
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ubsequently reperfusion injury on the neuronal structures which 

s called the ischemia/reperfusion injury of spinal cord (SCIRI) [ 1 ]. 

araplegia as a result from SCIRI results in physically, socially and 

nancially deprived victims [ 2 ]. SCIRI is a composite of interwoven 

athological pathways result in apoptotic cell death which includes 

ecreases of cellular energy production, mitochondrial dysfunction, 

lteration of ionic distribution, loss of membrane potential, depo- 

arization of cellular membranes, extreme discharge of glutamate, 

https://doi.org/10.1016/j.injury.2021.08.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/injury
http://crossmark.crossref.org/dialog/?doi=10.1016/j.injury.2021.08.004&domain=pdf
mailto:boragurer@gmail.com
https://doi.org/10.1016/j.injury.2021.08.004


F.O. Kahveci, R. Kahveci, E.C. Gokce et al. Injury 52 (2021) 2803–2812 

a

p

[

p

f

m

t

t

l

b

i

[

L

r

p

M

D

b

C

c

p

i

i

d

B

L

[

j

1

m

w

o

 

S

p

t

m

o

l

P

w

v

t

r

w

a

(

m

t

c

r

m

I

a

(

p

s

B

w

n

T

(

c

t

fl

T

[

l

t

n

V

a

d

u

i

a

T

d

c

t

o

t

c  

e

p

b

S

T

w

e  

a

lterations of glutamate receptor activations and glutamate trans- 

orter expression, increase in oxidative stress and inflammation 

 3 , 4 ]. Despite various pharmacological agents have been studied to 

revent these interconnected pathological processes and enhance 

unctional outcome after SCIRI [ 5-16 ], no neuroprotective treat- 

ent has been successfully effective so far. 

Lamotrigine (LTG) is an anticonvulsant drug mainly used for the 

reatment of epilepsy and bipolar disorders. It has been showed 

hat LTG has protective properties on neuronal tissues in different 

aboratory studies, such as hypoxic-ischemic encephalopathy, cere- 

ral ischemia, subarachnoid hemorrhage and traumatic spinal cord 

njury, mainly through presynaptic inhibition of glutamate release 

 17-21 ]. Herein, we intended to look into neuroprotective effects of 

TG on biochemical, histological, ultrastructural and behavioral pa- 

ameters in a rat model of SCIRI. No studies reporting the neuro- 

rotective actions of LTG on SCIRI had been found in the literature. 

aterials and methods 

rug treatments and study groups 

All experimental procedures used in this study were approved 

y the Ministry of Health Ankara Education and Research Ethics 

ommittee in accordance with the European Communities Coun- 

il Directive (86/609 / EEC) dated November 24, 1986 on the 

rotection of experimental animals. Lamotrigine (LTG; lamotrig- 

ne isethionate, GlaxoSmithKline, Istanbul, Turkey) (20 mg/kg/day) 

ntraperitoneally was used in this study and was dissolved in 

istilled water in the ultrasonic bath (Bandelin-Sonorex, BK100H, 

erlin, Germany). The administration time, route and dosage of 

TG with its solvent were determined according to previous studies 

 17-25 ]. Anesthesia induction was achieved via intraperitoneal in- 

ection of 50 mg/kg ketamine HCl (Ketalar®; Pfizer Inc., USA), and 

0 mg/kg xylazine HCl (Rompun 1 2%; Bayer HealthCare AG, Ger- 

any). 

Thirty-two adult male Wistar Albino rats weighing 250 ±20 g 

ere assigned to four groups randomly, with each group consisting 

f eight rats. 

The description of groups was as follows: 

Group 1: sham (n = 8); rats underwent only a simple laparo- 

tomy without aortic occlusion after dissection. After sacrific- 

ing of the animals at the 24 th hours of injury, nonischemic 

samples of spinal cord were taken to elucidate normal mor- 

phology and biochemical outcomes. 

Group 2: ischemia (n = 8); rats suffering from SCIRI injury re- 

ceived a single dose of 2 ml of distilled water into the in- 

traperitoneal space as vehicle equal to the LTG volume. 

Group 3: methylprednisolone (MP) (n = 8); MP (Prednol, 

Mustafa Nevzat, Turkey) was administered into the in- 

traperitoneal space of rats at a single 30 mg/kg dose just 

after induction of ischemia-reperfusion injury [ 9 , 16 ]. 

Group 4: LTG (n = 8); as in group 3, but, 30 minutes before

the abdominal cavity was opened, LTG was administered in- 

traperitoneally at a dose of 20 mg/kg for a single time [ 17- 

25 ]. 

No drug reaction came out in the study groups. 

urgical procedure 

The rats were kept under suitable humidity (65–70%) and tem- 

erature (23 ± 2 °C), with free access to food and water, under a 

welve-hour dark and light cycle. 

Rats with rectal probes were placed on the heating pad which 

aintains the body temperature of 37 °C, following the induction 
2804 
f anesthesia which applying with intraperitoneally 10 mg/kg xy- 

azine (Rompun, Bayer, Turkey) and 50 mg/kg ketamine (Ketalar, 

arke Davis, Turkey) with allowing spontaneous respiration. 

Spinal cord ischemia-reperfusion was performed in accordance 

ith the time and method to create sufficient damage as pre- 

iously described [ 25 , 26 ]. After entering the abdominal cavity 

ransperitoneally, aorta was exposed from the beginning of the left 

enal artery proximally to the bifurcation point distally, where it 

ould be clamped. Immediately after injection of 200 IU/kg hep- 

rin, the aorta is clamped with clamps with a closing force of 70 g 

Yasargil FE 721; Aesculap, Tuttlingen, Germany) at the two points 

entioned above to create ischemia, and it is visually confirmed 

hat the femoral artery pulse disappears during the 30-minute is- 

hemia period and returns during the reperfusion period. After 24h 

eperfusion period, the rats were sacrified with injection of 200 

g/kg pentobarbital (Nembutal; Oak Pharmaceuticals, Lake Forest, 

L), and spinal cord segments from L4 to L6 levels were removed 

nd divided into 3 equal parts for examination of light microscopy 

proximal part), electron microscopy (middle part) and biochemical 

arameters (caudal part). Tissues to be used in biochemical analy- 

is were stored at -80 °C till the analysis. 

iochemical procedures 

After homogenization with physiological saline solution, tissues 

ere centrifuged at 40 0 0 rpm for 20 minutes to obtain super- 

atants from the tissues to be used in analysis. 

issue tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta 

IL-1 β) analysis 

ELISA kits (Uscn Life Science Inc., Wuhan, China), working ac- 

ording to the instructions for use and expressed as U/g-protein, 

ested tissue TNF- α and IL-1 β levels, which are indicators of in- 

ammation. 

issue nitric oxide (NO) analysis 

Tissue NO levels were measured as described by Miranda et al. 

 27 ]. In this method, proteins of tissues homogenized in saline so- 

ution are precipitated using ethanol. The substances are allowed 

o be separated for fifteen minutes at 25 °C to recover the super- 

atant. 0.5 ml supernatant, 0.5 ml vanadium (III) chloride (8 mg 

Cl 3 /ml) and 0.5 ml freshly prepared Griess reagent (1% sulfanil- 

mide, 2% phosphoric acid and 0.1% N-1 naphthylethylene diamine 

ihydrochloride; 500 μl) mixture is incubated at 37 °C for 30 min- 

tes by vortexing. Then, the absorption at 540 nm is measured us- 

ng a dual beam spectrophotometer and the results are expressed 

s nmol/mg-protein. 

issue glutathione peroxidase (GPx), catalase (CAT) and superoxide 

ismutase (SOD) analysis 

ELISA kits (Uscn Life Science Inc., Wuhan, China), working ac- 

ording to the instructions for use and expressed as U/g-protein, 

ested levels of tissue GPx and CAT activities, which are indicators 

f oxidative stress. Total (Cu - Zn and Mn) SOD (EC 1.15.1.1) ac- 

ivity of the supernatant in the ethanol phase was determined ac- 

ording to the description of Sun et al. [ 28 ]. After adding 1.0 ml of

thanol/chloroform mixture (5/3, v/v) to the same volume of sam- 

le and centrifuging, the amount of enzyme that caused 50% inhi- 

ition of nitrobluetetrazolium reduction was defined as one unit of 

OD and the enzyme activity was expressed as U/mg-protein. 

issue malondialdehyde (MDA) analysis 

Tissue MDA levels were assessed by a method based on reaction 

ith thiobarbituric acid (TBA) as previously described by Ohkawa 

t al [ 29 ]. 375 μl acetic acid (pH 3.5, 20%) and 375 μl TBA (0.6%)

re added to a mixture of 100 ml of tissue homogenate and 50 
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l of sodium dodecyl sulfate (SDS, 8.1%) which is vortexed and 

ncubated at room temperature. After this entire mixture is heated 

n boiling water for 60 minutes and subsequently cooled to room 

emperature, 1.25 ml of butanol: pyridine (15: 1) is added to each 

est tube. Then this vortexed mixture is centrifuged at 40 0 0 g for 

 minutes and the absorption of 750 μl organic layer is read at 

32 nm in 1 milliliter cells. MDA concentrations were expressed as 

mol/mg-protein. 

issue caspase-3 analysis 

ELISA kits (Uscn Life Science Inc., Wuhan, China), working ac- 

ording to the instructions for use and expressed as U/g-protein, 

ested level of caspase-3 activity, which is an indicator of apopto- 

is. 

istopathological procedures 

ight microscopy examination 

A histopathologist who blinded to the study design evaluated 

ematoxylin-eosin (H&E) stained spinal cord tissue sections with a 

hickness of 5 μm by using a light microscopy. A semi-quantitative 

coring system scored neuronal degeneration, cellular edema, hem- 

rrhage, congestion and inflammation in spinal cord tissue sections 

s follows; 0: absent; 1: mild; 2: moderate; and 3: common. The 

verage of the scores of these four different parameters determined 

he pathological score for each spinal cord tissue [ 30 ]. 

In order to more detailed grading of neuronal injury; spinal 

ord anterior horn motor neurons were counted in three segments 

or all rats and averaged [ 31 ]. 

ransient electron microscopy examination 

Semi-thin sections with a thickness of 2 μm stained with 

ethylene blue and ultra-thin sections with a thickness of 60 

anometers stained with uranyl acetate and lead citrate were ex- 

mined using a Nikon Optiphot (Nikon Corporation, Tokyo, Japan) 

ight microscopy and transmission electron microscopy Jeol JEM 

200 EX (Jeol Ltd., Tokyo, Japan), respectively. As described by Kap- 

ano ̆glu et al. [ 32 ], every 100 large diameter myelinated axons, 

edium diameter myelinated axons, and small diameter myeli- 

ated axons were counted, evaluated, and scored between 0 and 3, 

s follows: 0 = ultrastructurally normal myelinated axon, 1 = sep- 

ration in myelin configuration, 2 = interruption in myelin config- 

ration, and 3 = honeycomb appearance in myelin configuration. 

eurological evaluation 

Basso, Beattie and Bresnahan (BBB) locomotor scale and in- 

lined plane test evaluated the neurofunctional status of rats at 

he beginning of the experiment and just before sacrification. In 

he BBB test rats were scored between 0 and 21 points from no 

ctivity to normal activity [ 33 ], while in the inclined plane test the

ngle at which the rats stood at the maximum slope for 5 s was

ecorded by an independent observer for evaluation of motor func- 

ion [ 34 ]. 

tatistical analysis 

Data analysis was performed by using SPSS for Windows, ver- 

ion 11.5 (SPSS Inc., Chicago, IL, United States). Whether the distri- 

utions of continuous variables were normally or not was assessed 

y Shapiro Wilk test. Levene test was used for the evaluation of 

omogeneity of variances. Data were shown as mean ± standard 

eviation or median (IQR), where applicable. 

While the mean differences among groups were analyzed by 

sing One-Way ANOVA, otherwise, Kruskal Wallis test was applied 

or comparing the median values. When the p value from One-Way 
2805 
NOVA or Kruskal Wallis test statistics are statistically significant 

ost hoc Tukey HSD or Conover’s non-parametric multiple compar- 

son test were used to know which group differ from which others. 

 p value less than 0.05 was considered statistically significant. 

esults 

issue tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta 

IL-1 β) analysis 

Spinal cord ischemia-reperfusion injury leads to produce TNF- 

and IL-1 β by macrophages and neutrophils at the time of the 

nitial ischemia and subsequent reperfusion. Therefore, statistically 

ignificant elevation was observed on cytokine levels in the is- 

hemia group when compared to the sham group (p < 0.001 for 

oth comparisons). An increase of proinflammatory cytokines was 

lso observed in both the LTG and the MP groups compared with 

he sham group (p < 0.05 and p < 0.01, respectively). However, 

oth LTG and MP treatments provided marked decrease in the tis- 

ue TNF- α and IL-1 β levels when compared to the ischemia group 

p < 0.05 for both comparisons). No such difference was observed 

ith respect to tissue TNF- α and IL-1 β levels between the MP and 

he LTG groups (p = 0.857 for both comparisons) ( Fig. 1 A and 1 B). 

issue nitric oxide (NO) analysis 

Spinal cord ischemia-reperfusion injury results in elevation of 

O levels due to free radical production, which is an indicator of 

he oxidative stress. Whence, tissue NO levels of the sham group 

ere significantly lower compared to the ischemia, MP and LTG 

roups (p < 0.001, p < 0.01 and p < 0.05, respectively). Tissue 

O levels increased significantly in the MP and the LTG groups 

ompared to the ischemia group (p < 0.05 for both comparisons). 

here was no statistical difference between the treatment groups 

p = 0.622) ( Fig. 1 C). 

issue glutathione peroxidase (GPx), catalase (CAT) and superoxide 

ismutase (SOD) analysis 

Spinal cord ischemia-reperfusion injury can cause impairment 

f antioxidant defense mechanisms under highly elevated oxidative 

tress. Therefore, tissue antioxidant enzyme activities (GPx, CAT 

nd SOD) in the treatment groups (MP and LTG) were significantly 

igher than in the ischemia group (p < 0.05, for all comparisons). 

here was no difference in tissue GPx, CAT and SOD activities be- 

ween the treatment groups (p = 0.993, p = 0.928 and p = 0.447, 

espectively) ( Fig. 1 D,E,F). 

issue malondialdehyde (MDA) analysis 

Spinal cord ischemia-reperfusion injury can lead to an eleva- 

ion of MDA levels due to lipid peroxidation. Whence, tissue MDA 

evels of the sham group were significantly lower compared to 

he ischemia group and the MP and the LTG groups (p < 0.001, 

 < 0.01 and p < 0.05, respectively). Similarly, tissue MDA lev- 

ls of both treatment groups were significantly lower compared 

o the ischemia group (p < 0.05 for both). The treatment groups 

id not differ among themselves with regard to tissue MDA levels 

p = 0.788) ( Fig. 1 G). These results suggest that both MP and LTG

reatments significantly attenuated the elevated MDA levels due to 

CIRI, and protected the spinal cord from lipid peroxidation. 

issue caspase-3 analysis 

The increase in tissue caspase-3 activity due to apoptotic cell 

eath after SCIRI resulted in the detection of lower mean tissue 
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Fig. 1. A, B, C, E, F, G, H. The horizontal lines in the middle of each box indicates the median, while the top and bottom borders of the box mark the 25 th and 75 th 

percentiles, respectively. The whiskers above and below the box mark indicates the maximum and minimum levels. Fig. 1 D. The box in the middle of each whiskers 

indicates the arithmetic mean, while the whiskers above and below the box mark the + SD and – SD levels, respectively. CAT: catalase, GPx: glutathione peroxidase, IL-1 β: 

interleukin-1 beta, MDA: malondialdehyde, MP: methylprednisolone, NO: nitric oxide, SOD: superoxide dismutase, TNF- α: tumor necrosis factor-alpha. 
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aspase-3 activity in the sham group compared to the ischemia 

roup and the MP and the LTG groups (p < 0.001, p < 0.01 and p <

.05, respectively). However, the average tissue caspase-3 activities 

ere lower in both treatment groups compared to the ischemia 

roup (p < 0.05 for both comparisons). There was no such differ- 

nce between the MP and the LTG groups (p = 0.822) ( Fig. 1 H).

hese results clearly demonstrate that the ischemia-induced ele- 

ation in tissue caspase-3 activity was largely attenuated by LTG 

reatment in post-ischemia period. 

o  

2806 
All biochemical results were summarized in Table 1 . 

istopathological examination 

The histological scores of the study groups regarding neuronal 

egeneration, cellular edema, hemorrhage/congestion, and inflam- 

ation are represented in Table 2 . 

Light microscopic examination showed the regular morphol- 

gy of spinal cord samples in the sham group ( Fig. 2 A). In the
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Table 1 

Biochemical measurements relevant to the study groups. 

Variables Sham Ischemia MP LTG p-value 

Tissue TNF- α (U/g protein) 16.87 (10.17) a , b , c 42.83 (13.38) a , d , e 27.83 (8.04) b , d 26.57 (9.81) c , e < 0.001 

Tissue IL-1 β (U/g protein) 23.10 (7.84) a , b , c 79.02 (39.17) a , d , e 42.11 (17.59) b , d 40.94 (19.03) c , e < 0.001 

Tissue NO (mmol/g protein) 39.02 (17.12) a , b , c 83.76 (40.53) a , d , e 53.72 (25.21) b , d 51.36 (26.41) c , e < 0.001 

Tissue GPx (U/g protein) 62.55 ±16.31 a 27.55 ±10.30 a , d , e 47.56 ±13.49 d 49.39 ±14.18 e < 0.001 

Tissue CAT (U/g protein) 1.47 (1.23) a , b , c 0.21 (0.17) a , d , e 0.64 (0.50) b , d 0.75 (0.48) c , e < 0.001 

Tissue SOD (U/g protein) 0.81 (0.69) a , b , c 0.30 (0.12) a , d , e 0.48 (0.34) b , d 0.57 (0.26) c , e < 0.001 

Tissue MDA (nmol/g protein) 2.76 (1.42) a , b , c 10.77 (7.86) a , d , e 5.24 (4.19) b , d 4.90 (2.83) c , e < 0.001 

Caspase-3 (U/g protein) 151.46 (41.74) a , b , c 918.51 (429.74) a , d , e 460.59 (252.20) b , d 465.21 (238.45) c , e < 0.001 

CAT: catalase, GPx: glutathione peroxidase, IL-1 β: interleukin-1 beta, LTG: lamotrigine, MDA: malondialdehyde, MP: methylprednisolone, 

NO: nitric oxide, SOD: superoxide dismutase, TNF- α: tumor necrosis factor-alpha. 
a Sham vs Ischemia (p < 0.001), 
b Sham vs MP (p < 0.01), 
c Sham vs LTG (p < 0.05), 
d Ischemia vs MP (p < 0.05), 
e Ischemia vs LTG (p < 0.05). 

Table 2 

Histopathological parameters relevant to the study groups. 

Variables Sham Ischemia MP LTG p-value 

Edema 0 (0-0) a , b , c 2 (2-3) a , d , e 1 (0-2) b , d 1 (0-2) c , e < 0.001 

Congestion 0 (0-0) a , b , c 2 (2-3) a , d , e 1 (1-2) b , d 1 (1-1) c , e < 0.001 

Inflammation 0 (0-0) a , b , c 1 (1-1) a 1 (0-1) b 1 (0-1) c < 0.001 

Degeneration 0 (0-0) a , b , c 2 (2-3) a , d , e 1 (1-2) b , d 1 (1-1) c , e < 0.001 

Pathological score 0 (0-0) a , b , c 7 (7-9) a , d , e 4 (3-6) b , d 4 (3-5) c , e < 0.001 

Number of normal neurons 46.5 ±4.34 a , b , c 21.5 ±2.33 a , d , e 36.0 ±2.83 b , d 36.7 ±2.37 c , e < 0.001 

LTG: lamotrigine, MP: methylprednisolone. 
a Sham vs Ischemia (p < 0.001), 
b Sham vs MP (p < 0.001), 
c Sham vs LTG (p < 0.001), 
d Ischemia vs MP (p < 0.01), 
e Ischemia vs LTG (p < 0.001). 

Fig. 2. Photomicrographs of 5-mm-thick spinal cord tissue sections from the different treatment groups (H&E, X20). A; Sham group showing normal spinal cord parenchyma 

with normal-appearing neurons (filled arrow). B; Ischemia group showing diffuse hemorrhage and congestion (arrowhead), and widespread edema (asterix) with highly 

degenerated neurons (arrow) in the gray matter. C; MP group, showing mild edema (asterix) and mild hemorrhagic congestion (arrowhead). D; LTG group, showing mild 

edema (asterix) and mimimal congestion (arrowhead) with less degenerated normal neurons (arrow). 

2807 
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pinal cord samples of ischemia group, there were severe vascu- 

ar congestion, pericellular and interstitial edema consistent with 

he ischemia-reperfusion injury. There was also pyknosis, intense 

welling of axonal structures, loss of cytoplasmic features, and cy- 

oplasmic eosinophilia indicating neuronal injury ( Fig. 2 B). These 

athological alterations were considerably reduced in the spinal 

ord samples of MP group as well as LTG group ( Fig. 2 C and D). 

The pathological scores of ischemia group statistically higher 

han the sham group (p < 0.001). There were also higher patho- 

ogical scores in both the MP and the LTG groups compared with 

he sham group (p < 0.001 for both comparisons). However, both 

he MP and LTG groups demonstrated significantly lower patho- 

ogical scores than the ischemia group (p < 0.01 and p < 0.001, 

espectively). No significant difference was observed between the 

P and LTG groups in terms of pathological scores (p = 0.248). 

The count of normal motor neurons within the anterior horns 

f the spinal cord was significantly greater in the sham group than 

n the other groups which exposed to ischemia reperfusion injury 

p < 0.001 for all comparisons). Also, ischemia group showed sta- 

istically significantly lower normal motor neurons number than 

ither MP or LTG groups (p < 0.001 for both comparisons). This 

ifference was not statistically significant between the MP and LTG 

roups (p = 0.961) ( Table 2 ). 

ltrastructural examination 

In TEM examination of the sham group; the ultrastructure of 

he neurons was normal in appearance, and there were no patho- 

ogical changes in the intracellular organelles, nuclei, membranes 

nd perineuronal tissues. Nevertheless, mild separations were ob- 

erved in a very few of the large-sized myelinated axons in a small 

art of the myelin sheath which could be due to delayed fixation. 

he ultrastructural features for the rest of the myelinated axons in 

ll size were found to be normal ( Fig. 3A ). 

In the ischemia group; severe ultrastructural pathological 

hanges were observed in both white and gray matter due to 

CIRI, including the interruptions and separations of myelin sheats 

n white matter axons, and swollen mitochondria, intrastoplas- 

ic neuronal vacuoles and perineural edema in the gray matter 

 Fig. 3 B). 

TEM examinations of tissue samples in the MP group revealed 

erineural edema with swollen mitochondria and vacuoles in the 

euron cytoplasm in gray matter as ultrastructural pathological 

hanges. Additionally; mostly large- and medium-sized myelinated 

xons with a few small-sized myelinated axons showed separations 

n myelin configurations in white matter ( Fig. 3 C). 

Perinuclear cisternal dilatations with a small amount of per- 

neural edema have been observed in TEM examination of the gray 

atter of the LTG group tissue samples. Separations in myelin con- 

guration were observed in this group especially in most large- 

ized and medium-sized myelinated axons in contrast to majority 

f the small-sized myelinated axons were ultrastructurally normal 

 Fig. 3 D). 

Small-, medium- and large-sized myelinated axons were more 

njured in the ischemia group compared to the sham group (p < 

.01 for all comparisons). Similarly, these differences were statisti- 

ally significant with regard to myelin damage for small-, medium- 

nd large-sized myelinated axons between the MP and the is- 

hemia group (p < 0.01 for all comparisons). The difference was 

lso statistically significant between LTG group and the ischemia 

roup in terms of damage to small-, medium- and large-sized 

yelinated axons (p < 0.01 for all comparisons). These results 

uggest that both LTG and MP treatments protected the small-, 

edium- and large-sized myelinated axons effectively from I/R in- 

ury. 

The electron microscopy results summarized in Table 3 . 
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eurological evaluation 

The mean values of neurologic examination scores in different 

roups were summarized in Table 4 . 

Neurological scores were significantly deteriorated in the is- 

hemia group compared with the sham group in terms of BBB 

cores and mean angles recorded in the inclined-plane test (p < 

.001 for both comparisons). Both LTG and MP groups showed 

igher BBB scores and the angles in the inclined-plane test when 

ompared to the ischemia group (p < 0.001 for both comparisons). 

he BBB scores and the mean angles recorded in the inclined-plane 

est had not been shown a difference of statistical significance be- 

ween the MP group and the LTG group (p = 0.560 and p = 0.995,

espectively). Therefore, we suggested that LTG treatment could be 

eneficial to ameliorate functional neurological deficit after SCIRI 

s well as MP. 

iscussion 

One of the key pathological changes in the spinal cord that 

ccur during the prolonged aortic occlusion is massive release of 

xcitatory amino acid neurotransmitters, notably glutamate. Exces- 

ive accumulation of glutamate in the synaptic cleft may result in 

ell swelling, vacuolization, apoptosis and neuronal death in the 

ourse of SCIRI through leading to over-stimulation of glutamate 

eceptors and the disruption of glutamate transporters. Thus, a 

rend towards ameliorating excitotoxic neuronal damage by modi- 

ying excitatory amino acid release, excitatory amino acid receptor 

ntagonism and subsequent inhibition of proteolysis and lipid per- 

xidation has potentially emerged [ 35-44 ]. 

The results of pharmacological research reveal that LTG pro- 

ibits the aberrant extracellular accumulation of glutamate as well 

s the action potential discharges caused by glutamate [ 45 ]. Addi- 

ionally, LTG has been suggested to inhibit vesicular release of glu- 

amate by inhibiting high voltage activated calcium currents [ 46 ]. 

ubsequently, LTG is a blocker for voltage-gated sodium channels, 

epending on the dose [ 47-49 ]. Besides all these pharmacologi- 

al properties, recent experimental studies suggested that LTG had 

rotective effects through suppressing the inflammatory response, 

ecreasing the oxidative stress and inhibiting the apoptosis, against 

he cellular damage in ischemia reperfusion injury [ 50-52 ]. How- 

ver, to best of our knowledge, protective effects of LTG against 

euronal damage in SCIRI had not been studied before. 

Prolonged ischemia triggers an early inflammatory response 

ue to releasing of inflammatory cytokines like TNF- α and IL-1 β
y residential microglia and macrophages in severely injured is- 

hemic cord. During reperfusion, many neutrophils, macrophages 

nd microglial cells migrate to the damaged area, result in am- 

lification of initial inflammatory response through reactions me- 

iated by chemoattractrants and cytokines [ 53 , 54 ]. High levels of 

xtracellular glutamate act as chemoattractant and causes the in- 

ltrating cell accumulation including microglia, neutrophils and 

acrophages into the injured tissue by activating ionotrophic class 

 metabotropic glutamate receptors [ 55 ]. Activation of ionotropic 

lutamate receptors leads to an enhancement in the release of 

NF- α, and IL-1 β mainly by the neutrophil’s azurophilic granules, 

hich subsequently result in edema, hemorrhage and apoptotic 

ell death [ 56 , 57 ]. Therefore, high TNF- α, and IL-1 β levels are re-

iable markers of inflammation during SCIRI. Additionally, previous 

tudies showed that LTG had anti-inflammatory and immunomod- 

latory actions via inhibition of TNF- α, IL-1 β and IL-2 secretions 

 58 ]. In consistently, we demonstrated that ischemia-reperfusion 

njury leads to marked elevation of TNF- α and IL-1 β levels and 

hese alterations were significantly decreased by both LTG and 

P administration, disclosing the anti-inflammatory effects of both 

rugs. 
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Fig. 3. Transmission electrom microscopy of the groups. A. Transmission electron microscopic examination of the tissue samples of the sham group showed normal spinal 

cord ultrastructure in the gray and white matters. The mild seperations in the myelin configuration observed in a very few of the large-sized myelinated axons may be 

explained by delayed fixation m : ultrastructurally normal myelinated axon (Bar represents 2 μm). B. Electron micrograph from the ischemia group showing separations 

in myelin configuration ( ∗) in small, medium, large sized myelinated axons and interruption in myelin configuration (arrow) in a medium sized myelinated axon (orginal 

magnification x 50 0 0). C. Electron micrograph of the MP group showing perineural edema (po) with swollen mitochondria (double arrow) n : nucleus of neuron D. Electron 

micrograph of the LTG group showing vacuoles ( v ) and a swollen mitochondria (double arrows) inside the cytoplasm of neurons. n : nucleus of neuron. 

Table 3 

Electron microscopy results. 

Myelinated Axon Sham Ischemia MP LTG p-value 

Small-sized 0 (0-0) a , b , c 115 (110-120) a , d , e 30 (26-32) b , d 33 (31-37) c , e < 0.001 

Medium-sized 0 (0-0) a , b , c 140 (128-144) a , d , e 91 (87-93) b , d 86 (79-90) c , e < 0.001 

Large-sized 4 [ 2-6 ] a , b , c 169 (167-180) a , d , e 115 (113-119) b , d , f 94 (91-97) c , e , f < 0.001 

LTG: lamotrigine, MP: methylprednisolone. 
a Sham vs Ischemia (p < 0.01), 
b Sham vs MP (p < 0.01), 
c Sham vs LTG (p < 0.01), 
d Ischemia vs MP (p < 0.01), 
e Ischemia vs LTG (p < 0.01), 
f MP vs LTG (p < 0.01). 

Table 4 

The results of neurological assessment of the study groups. 

Myelinated Axon Sham Ischemia MP LTG p-value 

BBB 21.0 (0.00) a , b , c 1.5 (1.00) a , d , e 8.0 (2.75) b , d 8.5 (3.00) c , e < 0.001 

Inclined plane angel 78.0 ±4.14 a , b , c 37.5 ±4.98 a , d , e 60.7 ±7.24 b , d 61.5 ±7.69 c , e < 0.001 

LTG: lamotrigine, MP: methylprednisolone. 
a Sham vs Ischemia (p < 0.001), 
b Sham vs MP (p < 0.001), 
c Sham vs LTG (p < 0.001), 
d Ischemia vs MP (p < 0.001), 
e Ischemia vs LTG (p < 0.001). 

2809 



F.O. Kahveci, R. Kahveci, E.C. Gokce et al. Injury 52 (2021) 2803–2812 

i

s

o

r

a

t

s

t

A

i

w

a

s  

p

[

t

i

m

e

n

a

i

p

a

a  

t

i

a

i

t

p

w

i

fl

s

C

m

c  

s

r

e

f

o

i

t

a

a

e

m

s

p

t

a

m

i

r  

a

a

m

c

s

s

p  

w

t

t

o

L

c

n

a

w

f

c

S

C

b

i

h

m

L

a

o

D

D

R

 

 

 

 

 

Reactive oxygen species, which plays a fundamental role in 

mmune system regulation and maintenance of redox homeosta- 

is under physiologic conditions, plays a detrimental role due to 

verproduction. During the ischemia reperfusion large amount of 

eactive oxygen species expose due to membrane depolarization 

nd inflammatory reactions. Oxidative balance cannot be main- 

ained between the reduced expression of antioxidant enzymes 

uch as SOD, CAT and GPx and the increased production of reac- 

ive oxygen species. This situation called "oxidative stress" [ 59 , 60 ]. 

dditionally, excessive extracellular glutamate accumulation dur- 

ng ischemia contributes to increased intracellular level of calcium 

hich resulting in an increase in NO, which leads to DNA dam- 

ge by activation of calcium-dependent proteases and nitric oxide 

ynthase [ 61 , 62 ]. Ozkul et al. showed that LTG prevents increase in

refrontal cortex NO levels in rat global cerebral ischemia model 

 51 ]. Reactive oxygen species also disrupts cell structure and func- 

ion by causing the production of MDA, a marker of lipid perox- 

dation, through the oxidation of polyunsaturated fatty acids in 

embrane phospholipids [ 63 ]. It has been suggested that in the 

xperimental cerebral ischemia model, LTG can reduce oxidative- 

itrosative stress by decreasing NO and MDA levels and increasing 

ntioxidant GSH, GSH-R, SOD and CAT levels [ 51 ]. Previous stud- 

es had also shown that LTG had anti-epileptic activity in mice ex- 

osed to a chemoconvulsive model, and suggested that it may be 

ssociated with a decrease in oxidative stress with increase in CAT 

nd GPx activities [ 64 ]. Moreover Tufan et al. [ 20 ], demonstrated

hat LTG improved the altered oxidant/antioxidant status by reduc- 

ng the increased MDA levels and increasing the inadequate SOD 

nd GPx levels, which formed due to traumatic spinal cord injury 

n rats. Consistent with previous studies, our results had shown 

hat both LTG and MP treatment provided antioxidant and neuro- 

rotective effects by increasing the SOD, CAT and GPx activities as 

ell as decreasing MDA and NO levels after spinal cord ischemia 

n rats. 

During the ischemia reperfusion excessive release of proin- 

ammatory cytokines in addition to overproduction of ROS re- 

ult in apoptotic cell death by activating the caspase cascade [ 65 ]. 

aspase-3, as a reliable marker of apoptosis, initiates the final com- 

on pathway which causes break down proteins in the internal 

ytoskeleton and membrane of the cell [ 66-72 ]. Lagrue et al. [ 73 ],

howed that, LTG prevented apoptosis by inactivation of the neu- 

onal caspase 3 immunoreacivity in energy deficient mice. Kim 

t al. [ 74 ], further suggested that LTG exerts neuroprotective ef- 

ect by suppressing cytochrome c release followed by activation 

f caspase-3. In this study, we demonstrated that caspase-3 activ- 

ty as an indicator of apoptosis markedly elevated significantly af- 

er SCIRI. Both LTG and MP treatments protected spinal cord from 

poptosis via inhibition of caspase-3 activity. 

Ischemia-reperfusion injury caused neuronal pyknosis, intense 

xonal swelling, loss of cytoplasmic features and cytoplasmic 

osinophilia at the cellular level. It also induced demolition of gray 

atter neurons. Additionally, SCIRI was shown to interrupt and 

eparate the myelin configuration at the ultrastructural level es- 

ecially in the large sized axons. These alterations were also par- 

ially improved by both LTG and MP treatments. Improvements in 

ll these pathological changes also verified by light and electron 

icroscopic examination. 

Basso, Beattie and Bresnahan locomotor scale score and 

nclined-plane test were utilized for the assessment of locomotor 

ecovery [ 33 , 34 ]. SCIRI leads to significant reduction in BBB scores

s well as the mean angle in inclined-plane test, and these alter- 

tions have been substantially improved by both LTG and MP treat- 

ents when compared the ischemia group. 

Although, safety of high-dose MP treatment in the acute spinal 

ord injury medication has been intensely questioned due to its 

ide effects, it is still a well-known positive control group for SCIRI 
2810 
tudies due to its antioxidant, antiinflammatory and antiapoptotic 

roperties [ 10-15 , 30 , 75 , 76 ]. Therefore, we compared LTG treatment

ith the MP as a positive control group. 

The insufficient number of rats in the groups, the short dura- 

ion of the study, the lack of study of different drug administra- 

ion routes, administration times and doses limit the adaptability 

f the results of our study to clinical use. The aim of administrating 

TG immediately after reperfusion was to reach an effective blood 

oncentration immediately after the insult. However, the effective- 

ess of the LTG aftrer SCIRI needs to be further be examined when 

pplied after a certain period of time following the reperfusion, 

hich would more likely mimic the actual clinical scenario. There- 

ore, based on these preliminary results, there is a need for more 

omprehensive, long-term studies involving different pathways in 

CIRI. 

onclusion 

Together with the results of previous studies, LTG may have 

eneficial effects in SCIRI by improving the biochemical, histolog- 

cal, ultrastructural and neurofunctional impairments toward en- 

ancing neuronal survival via intraperitoneal administration of 20 

g/kg daily dose. In our opinion, these neuroprotective effects of 

TG seems to be related its membrane stabilizing, antioxidative 

nd antiinflammatory effects, which prevents the expansion of sec- 

ndary excitotoxic neuronal damage. 
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